



Team #1

Team name: RHL

Humfrey Kimanya, Linh Vu, Rafael Luna 11/27/2022







## Design Problem and Objectives

- Design a balsa structure to support a limb in a human vehicle. The design should follow the given space envelope to support a specific load. A Nastran analysis is followed to predict the weight, ultimate load, and failure mode of the structure. Lastly, the structure will be manufactured using the provided materials and tested for failure.
- The project goal is to design for the maximum strength/weight (S/W) ratio.



## Requirements

- Design requirements
  - Stay within the space envelope.
  - Touch the support only where allowed.
  - Lamination/overlapping of joints is unlimited.
- Analysis requirements
  - Use the given materials and cross-sectional properties.
  - Provide analysis of S/W = minimum failure load/weight.
- Test requirements
  - Manufactured structure will be weighted and loaded to failure.
  - Actual S/W will be compared to the theoretical one.

## Specifications

- Design specifications
  - Total weight of the structure ≤ 0.15 lb<sub>f</sub>.
  - 10 lb<sub>f</sub> ≤ applied load ≤ 250 lb<sub>f</sub>.
  - Space envelope is given below.
- Analysis specifications
  - If predicted failure load ≥ 250 lb<sub>f</sub>, S/W = 250/W.
- Test specifications
  - If actual failure load ≥ 250 lb<sub>f</sub>, S/W = 250/W.



Design 1 Humfrey Kimanya Project 4 PDR 11/25/2022

| APP  | 1     | lbf               |                     | Smax     | Smin      | Lambda   | Mass                   | Smax   | P <sub>ULT</sub> | P <sub>CR</sub> | P*     | safety     | w        | S/W     |
|------|-------|-------------------|---------------------|----------|-----------|----------|------------------------|--------|------------------|-----------------|--------|------------|----------|---------|
| PULT | 1000  | psi               |                     | psi      | psi       |          | lbf-s <sup>2</sup> /in | psi    | lbf              | lbf             | lbf    | safe/fails | lbf      |         |
| 3    | 386.6 | in/s <sup>2</sup> | Design 1 (hkimanya) | 2.37E+02 | -6.75E+02 | 1.53E+00 | 1.84E-04               | 674.68 | 370.55           | 382.00          | 370.55 | safe       | 7.13E-02 | 3505.89 |



Baseline design contained 3/16x3/16 elements throughout. Iterations made for selected mesh elements. See annotated design image

Material Properties of Balsa E=0.55e6 psi G=0.25E6 psi  $r=0.0065 lb_m /in^3$  $S_{LIIT}=1000 psi$ 









hkimanya\_project4\_003\_sim1 : Solution 1 Result

Subcase - Statics, Iteration 1

hkimanya\_project4\_003\_sim1 : Solution 1 Result



Design 2 Linh Vu Project 4 PDR 11/25/2022

| APP | 1     | lbf               |
|-----|-------|-------------------|
| ULT | 1000  | psi               |
| i   | 386.6 | in/s <sup>2</sup> |

|                 | Smax     | Smin      | Lambda   | Mass                   | Smax   | P <sub>ULT</sub> | P <sub>CR</sub> | P*     | safety     | W        | s/w     |
|-----------------|----------|-----------|----------|------------------------|--------|------------------|-----------------|--------|------------|----------|---------|
|                 | psi      | psi       |          | lbf-s <sup>2</sup> /in | psi    | lbf              | lbf             | lbf    | safe/fails | lbf      |         |
| Design 2 (lvu4) | 4.22E+02 | -8.33E+02 | 2.71E+00 | 1.89E-04               | 832.68 | 300.24           | 677.50          | 300.24 | safe       | 7.29E-02 | 3428.40 |





Strength to Weight Ratio: 3428.40

Analysis Type: Structural

Material Properties for Balsa:

E = 0.55E6 psi

G = 0.25E6 psi

 $\rho = 0.0065 \, \text{lb}_{\text{m}}/\text{in}^3$ 

 $S_{ULT} = 1000 \text{ psi}$ 







Designed 3 Rafael Luna Project 4 PDR 11/25/2022

Strength to Weight: 1268.41

**Material Properties:** E=0.55e6 psi G=0.25E6 psi r=0.0065 lbm /in3 sULT=1000 psi

| P <sub>APP</sub> | 1     | lbf               |
|------------------|-------|-------------------|
| S <sub>ULT</sub> | 1000  | psi               |
| G                | 386.6 | in/s <sup>2</sup> |

 $P_{ULT}$ Р\* S/W **Smin** Lambda Mass |Smax|  $P_{CR}$ safety W Smax lbf-s<sup>2</sup>/in lbf lbf lbf safe/fails lbf psi psi 4.32E+02 -4.82E+02 | 6.97E+00 | 5.10E-04 | 481.89 | 518.79 | 1743.44 | 518.79 | safe 1.97E-01 1268.41

rluna3\_Project04\_sim1 : Solution 1 Result











Stress Minimum





[lbf/in2]

324.76

251.42

178.09

104.76

31.43

-41.90

-115.23

-261.90

-335.23

## Summary

Team design data

| P <sub>APP</sub> | 250   | lbf               |
|------------------|-------|-------------------|
| S <sub>ULT</sub> | 1000  | psi               |
| G                | 386.6 | in/s <sup>2</sup> |

|                     | Smax     | Smin      | Lambda   | Mass                   | Smax   | P <sub>ULT</sub> | $\mathbf{P}_{CR}$ | Р*     | safety     | W        | S/W     |
|---------------------|----------|-----------|----------|------------------------|--------|------------------|-------------------|--------|------------|----------|---------|
|                     | psi      | psi       |          | lbf-s <sup>2</sup> /in | psi    | lbf              | lbf               | lbf    | safe/fails | lbf      |         |
| Design 1 (hkimanya) | 2.37E+02 | -6.75E+02 | 1.53E+00 | 1.84E-04               | 674.68 | 370.55           | 382.00            | 370.55 | safe       | 7.13E-02 | 3505.89 |
| Design 2 (lvu4)     | 4.22E+02 | -8.33E+02 | 2.71E+00 | 1.89E-04               | 832.68 | 300.24           | 677.50            | 300.24 | safe       | 7.29E-02 | 3428.40 |
| Design 3 (rluna3)   | 4.32E+02 | -4.82E+02 | 6.97E+00 | 5.10E-04               | 481.89 | 518.79           | 1743.44           | 518.79 | safe       | 1.97E-01 | 1268.41 |

Pugh matrix

| Criterion         | Design 1 | Design 2 | Design 3 |
|-------------------|----------|----------|----------|
| Ease of Assembly  | +        | Baseline | +        |
| Robustness        |          | Baseline |          |
| Optimization      | +        | Baseline | -        |
| Current S/W value | +        | Baseline | -        |
| Total             | +3       | Baseline | -1       |

Team direction

Currently, Design 1 has the highest S/W value, but Design 3 is easier to assemble. Both Design 2 and 3 have high chances of being optimized. Before deciding our final design, we will optimize Design 2 and 3.

