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INTRODUCTION  

Throughout the years, Mechanical Engineers have been developing and refining mathematical 

models to describe how various materials would react in different situations, a quest that Ogden 

continued in this paper. Ogden was interested in the deformation of incompressible, isotropic, highly 

elastic materials with negligible hysteresis effects and negligible temperature changes that follow a 

strain energy density function. More colloquially Ogden was investigating structural analysis of 

incompressible hyperelastic materials or incompressible Green-elastic materials, things like rubbers 

and some biological tissue. 

Due to the highly elastic nature of these materials, it is required for the models to be valid at very 

large displacements. Hence, finite strain theory is used to describe these materials. Within this theory, 

the tensors used to describe strain differ depending on whether Lagrangian and Eulerian reference 

frames are used. This discrepancy invites the use of principal stretches to be used to describe the 

deformation state of a body, instead of strain which works well for infinitesimal strain theory. The 

stretch tensors (and rotation tensor) are the components produced by the polar decomposition of the 

deformation gradient; critically, the principal values of both stretch tensors are identical and are 

therefore used for material models. 

While Ogden did not spend time talking about why stretch tensors were used, he did explicitly 

outline why the eigenvectors of the stretch tensors were the same as the Cauchy stress tensor. Thus, 

the principal stresses are a function of the principal stretches. The principal stress is specifically 

defined the following way: 𝜎𝑖 = 𝑎𝑖
𝜕𝜙

𝜕𝑎𝑖
− 𝑝 where 𝜎𝑖 is a principal Cauchy stress, 𝑎𝑖 is a principal 

stretch, 𝜙 is the strain energy density function, and 𝑝 is an arbitrary hydrostatic stress required for 

incompressibility. The various material models describing hyperelastic materials all follow this same 

generic constitutive equation. Furthermore, the only variable that is not dependent on the loading 



situation is the strain energy density, so the material models differ from each other by defining it in 

different ways. 

One of the first models, the incompressible Neo-Hookean model, used thermomechanical 

calculations to define the strain energy density as 𝜙 =
1

2
𝜇(𝐼1 − 3), and while this equation will be 

reviewed in more depth later in the paper, it serves as a great example to describe the anatomy of 

these functions. Firstly, note the 𝐼1, this is the first invariant of the stretch tensor, equivalent to 𝑎1
2 +

𝑎2
2 + 𝑎3

2 and describes the degree of deformation. Some other models incorporate the second invariant 

𝐼2 which is equivalent to 𝑎1
2𝑎2

2 + 𝑎2
2𝑎3

2 + 𝑎1
2𝑎3

2. The last invariant is 𝐼3, is sometimes also called 𝐽, is 

defined as 𝑎1
2𝑎2

2𝑎3
2 and describes the compressibility. Of note: all invariants are hydrostatic pressure 

dependent, so in compressible models the first two invariants are augmented with the third invariant 

to become pressure independent so that models can keep a similar form when considering 

compressible materials. Furthermore, it is of note that the stretch of an undeformed body is 1, so the 

undeformed values of first two invariants are 3 and the third is 1. This explains the deduction from 

the first invariant from the Neo-Hookean model. Lastly, there are material properties, such as the 𝜇 

in the Neo-Hookean model that are used to “tune” the model to the physical material. 

Ogden actually believed that using invariants was a hinderance and was one of the things he aimed 

to improve upon. Within the paper, he outlined his own model based on the critique of other models, 

fit it to data, used it in a practice problem, and determined a relation that ensures realistic results. 

RESULTS and CONCLUSION 

The ultimate result of this paper is a description of strain energy constructed from a linear 

combination of 2 variables 𝜇𝑟 and 𝛼𝑟 . Using these two Ogden was able to successfully model isotropic 

elastic materials in several configurations without the use of invariants, an achievement which is still 

referenced frequently for more modern applications. This hyperelastic model also requires that the 



material experience no permanent crystallization at high strains meaning the stress strain curve 

undergoes no hysteresis at extensions well over double the initial length.  

The form of Ogden’s strain energy is a simple linear combination of two terms  𝜙 = 𝜇𝑟Ψ(𝛼𝑟) 

where Ψ(𝛼𝑟) =
(𝑎1

𝛼𝑟+𝑎2
𝛼𝑟+𝑎2

𝛼𝑟−3)

𝛼𝑟
. The model was constructed to be applicable to a wide range of 

isotropic hyperelastic materials and was demonstrated against a common data set collected by Trealor 

et al to prove its efficacy. This data set was used as an objective measure by which Ogden compared 

his equation with other elasticity models such as the Varga and Neo-Hookean description and 

equibiaxial tension. One novel behavior of this model is that it can achieve a high degree of accuracy 

without the need for an infinite sum. Instead, a discrete sum over a finite set of real numbers leads to 

a comparatively small fit error even with very few terms. This was one of Ogden’s key objectives in 

the formation of the equation, not just its ability to fit empirical data but to do so while being 

mathematically simple. Other models such as Alexander or Hart-Smith’s models can describe similar 

material quite accurately but are mathematically cumbersome and are difficult or impossible to use 

in practical situations.  

Ogden goes to great lengths to fit each of Treloar’s data sets and in doing so, effectively 

demonstrates the versatility and simplicity of his model. The first data set records the force vs 

elongation for a hyper elastic material in simple tension, pure shear, and equiaxial tension. Neo-

Hookean and Varga models are used as a comparison for the quality of the curve fit. All graphs show 

decent agreement at low strains but diverge significantly at elongations over 200%. Using only a 

single strain energy function 𝜙 = 𝜇1Ψ(𝛼1) Ogden was able to achieve good fits up to elongations of 

200% for each of Treloar’s data sets.  

The data sets used extended well beyond 200% elongation, which neither the Varga nor Neo-

Hookean model successfully replicated for all orientations. Ogden’s single term fit was insufficient 



for such extreme stretches. By adding a second term 𝜙 = 𝜇1Ψ(𝛼1) + 𝜇2Ψ(𝛼2) and scaling the 
𝜇1

𝜇2
 ratio 

such that the second term has negligible impact at stretches below 200%, he was able to retain 

accuracy at low stretches while also achieving a good fit at more extreme stretches. In particular the 

simple tension data set was modeled successfully up to stretches of 700%. Unfortunately, the two-

term solution was insufficient to model the biaxial tension case for stretches over 200%. Again, a 

new term was added and the values of µ were adjusted to assure that each term influences a different 

region of the data set more strongly. Adding the 3rd term not only improves the accuracy of the biaxial 

tension model but also improves the simple tension and pure sheer models. This implies that 

additional terms can be added as the need arises to model materials at more extreme stretches.  

As a final justification for his equation Ogden checks the restrictions which ensure his model 

provides a physically reasonable response. To do this Ogden proposes Hill’s inequality as the gold 

standard due to its function for both incompressible but also compressible solids. By solving the Hill 

equality using Ogden’s strain energy he was able to show that the main constraint on his equation is 

that the value of  𝜇𝑟 𝛼𝑟 must be non-zero and positive. This ensures that the strain energy equation is 

both positive and definite, which are necessary criteria to mimic material behaviors. The solution to 

Hill’s inequality could not provide any relevant bounds for the individual values of 𝜇𝑟 or 𝛼𝑟 only that 

they must be non-zero with the same sign. This intuitive relation to physical phenomena was the final 

feather in the cap of a truly robust and impactful model. 

ORIGINAL CONTRIBUTION OF OGDEN’S MODEL 

In proposing a new strain-energy density function of hyperelastic materials, Ogden also discussed 

the strong points and shortcomings of previous proposed models, such as the Treloar’s model (neo-

Hookean form) and the Mooney-Rivlin one. 



To begin with, Treloar called his model neo-Hookean because it was developed based on Hooke’s 

law [2]. 

𝜙 =  
1

2
𝜇(𝐼1 − 3) (1) 

With 𝜇 is the shear modulus and 𝐼1 is the first stretch invariant explained in Introduction. Following 

the neo-Hookean form, Mooney and Rivlin further developed Treloar’s model from depending 

linearly only on the first invariant 𝐼1 to depending linearly on both the first and second invariants 𝐼1 

and 𝐼2 [3]. 

𝜙 =  𝐶10(𝐼1 − 3) +  𝐶01(𝐼2 − 3) (2) 

with 𝐶10 and 𝐶01 relate to the materials properties. Or in the general form, 

𝜙 =  ∑ 𝐶𝑚𝑛(𝐼1 − 3)𝑚(𝐼2 − 3)𝑛

𝑚,𝑛
(3) 

While Treloar and Mooney-Rivlin developed their strain energy density function using stretch 

invariants as independent variables, in this paper, Ogden expressed his function in terms of the 

principal stretch ratios. 

𝜙 = ∑  
𝜇𝑟

𝛼𝑟

(𝑎1
𝛼𝑟 + 𝑎2

𝛼𝑟 + 𝑎3
𝛼𝑟 − 3)

𝑟
(4) 

Using principal stretch ratios 𝑎1,2,3 instead of stretch invariants 𝐼1,2 provides the advantage of directly 

applying the test data into the function, meaning it is mathematically simple. The neo-Hookean 

function (Equation 1) is similarly simple as the Ogden’s model, but the range of validity is different 

and will be discussed later in this section. For the Mooney-Rivlin’s model, while Equation 2 

represents the strain energy density function within linearity, the generalized form (Equation 3) is 

used to guarantee the accuracy once the non-linearity strain range is reached. Even though Equation 

3 satisfies the accuracy of the calculation, with 𝐼1 =  𝑎1
2 + 𝑎2

2 +  𝑎3
2 and 𝐼2 =  𝑎1

−2 +  𝑎2
−2 +



 𝑎3
−2, the access to the principal stretches 𝑎1,2,3 within the function is being restricted, and therefore 

the derivation of the function is cumbersome.   

It was reported by Ogden that the neo-Hookean model (Equation 1) is valid up to only about 

200% strain in simple tension, pure shear, and equibiaxial tests. Additionally, as reported by 

WESLIM, this model only applies up to 30 – 40% of strain in uniaxial tension [4]. Similarly, The 

Mooney-Rivlin’s model (Equation 2) does not fit Treloar’s experimental data very well, and therefore 

limits its strain range at only up to 150% strain [5]. In comparison, Ogden’s strain energy density 

function (Equation 3) can represent Treloar’s experimental data greatly up to 750% strain by adding 

(𝛼𝑟 , 𝜇𝑟) terms and gradually adjust those constants. Hence, Ogden’s model is applicable for both 

small and large strain ranges, while the neo-Hookean and Mooney-Rivlin’s functions can only 

correctly represent the mechanical behavior of the material up to 200% strain. It is also reported by 

Kim. B. et al that for Chloroprene rubber, another rubberlike solid, the neo-Hookean and Mooney-

Rivlin models can only be applied at small strain ranges, while the Ogden function covers a larger 

range of strain of up to 700% strain [6,7].  

Additionally, the method of adding and gradually adjusting (𝛼𝑟 , 𝜇𝑟) terms for Ogden’s model is 

greatly approachable and applicable to any other rubberlike solids due to the linearity of Ogden’s 

function. 

CRITICAL APPRECIATION 

 

The assumptions made within the paper are the assumptions used to describe the material and the 

kind of analysis this model can be used for. The material is assumed to be highly elastic, which means 

that any time dependent behavior is negligible (no viscous heating) and large displacements are 

permitted. The completely elastic nature of the material is slightly idealized, however tiny 

temperature effects are negligible for structural analysis. Although it is typical for hyperelastic 



materials to exhibit crystallization proportional to strain, it is shown to have a negligible effect on the 

symmetry of material properties. Furthermore, because the crystals disappear as the strain is removed, 

the assumption of hysteresis effects being negligible is valid in most cases. Lastly, it is common for 

highly elastic materials to have large bulk moduli, so incompressibility is also widely applicable. So 

far, the material described is called an isothermal and incompressible Cauchy-elastic solid, however, 

Ogden also assumes that stress can be derived from a single strain energy density function or elastic 

potential function. This is a special case of Cauchy-elastic materials, and the conservative nature of 

a highly elastic material aligns with this assumption. Overall, the assumptions do not detract from the 

validity of the model, while it does limit the number of materials that can be described by the model. 

The model was intended to be mathematically simple with high accuracy. Considering the fitting 

to the Treloar dataset, both goals seem to have been accomplished. To speak briefly on any bias within 

the Treloar dataset, this dataset spans a very large range of strain values over three different modes 

of deformation that has been widely used as a test dataset for material models beforehand. That being 

said, multiple datasets could have been used to ensure widespread applicability instead of allowing 

for the possibility of coincidence or exception. 

As for thoroughness, the inclusion of an example situation in Section 5 of the paper where the 

model was used was excellent. It showed the kinds of situation that this contribution could be used 

for and showed how to actually work with the new model. The continuity inequality implications 

discussed at Section 6 of the paper was also a very thorough, as it commented about the restriction 

on the model to actually convey realistic interactions. 

Finally, over 3500 citations have been recorded by google scholar for this paper, with the most 

recent citation coming from April 15th, 2022. The scientific community obviously values this 

contribution and are continuing to use it. 



GRADE 

Ogden successfully addressed two objectives of his strain-energy density function: 1) accurately 

represents the mechanical behavior of rubberlike solids, and 2) mathematically simple to handle. The 

author also thoroughly reviewed and compared previously developed models to take out the strong 

points and address the shortcomings. Additionally, an example solved based on his proposed model 

and a discussion of the model’s limitation using the continuity inequality both show the 

thoughtfulness of Ogden in validating his model. Therefore, we assign an A+ to this paper. 
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